Multanimal Modi College, Modinagar DEPARTMENT OF PHYSICS

Program Outcomes: B.Sc. program aims at preparing the students for higher studies in the field of natural sciences and M.Sc. program is to prepare them for research in physics and various interdisciplinary areas.

Course Objective and Outcomes

CLASS: B.Sc.-1st Year

Subject: MECHANICS AND WAVE MOTION

Subject

Code: B-116

UNIT	MODULE	Specific
		Outcomes
Ι	Inertial reference frame, Newton's laws of motion, Dynamics of particle	To learn
	in rectilinear and circular motion, Conservative and Non -conservative	about
	forces, Conservation of energy, liner momentum and angular momentum,	conservation
	Collision in one and two dimensions, cross section.	theorems.
II	Rotational energy and rotational inertia for simple bodies, the combined	Learning
	translation and rotational and motion of a rigid body on horizontal and	about
	inclined planes, Simple treatment of the motions of a top. Relations	rotational
	between elastic constants, bending of Beams and Torsion of Cylinder.	motion.
III	Central forces, Two particle central force problem, reduced mass, relative	Learning
	and centre of mass motion, Law of gravitation, Kepler's laws, motions of	about
	planets and satellites, geo-stationary satellites.	planetary
		motion.
IV	Simple harmonic motion, differential equation of S. H. M. and its	To learn
	solution, uses of complex notation, damped and forced vibrations,	about
	composition of simple harmonic motion.	oscillations.
	Differential equation of wave motion, plane progressive waves in fluid	
	media, reflection of waves, phase change on reflection, superposition,	
	stationary waves, pressure and energy distribution, phase and group	
	velocity.	

CLASS: B.Sc.-1stYear

Subject: KINETIC THEORY AND THERMODYNAMICS(Code: B-117)

UNIT	MODULE				
Ι					
	Ideal Gas: Kinetic model, Deduction of Boyle's law, interpretation of temperature,				
	estimation of r.m.s. speeds of molecules. Brownian motion, estimate of the Avogadro				
	number. Equipartition of energy, specific heat of monatomic gas, extension to di- and				
	triatomic gases, Behaviour at low temperatures. Adiabatic expansion of an ideal gas,				
	applications to atmospheric physics.				
	Real Gas: Vander Waals gas, equation of state, nature of Van der Waals forces, comparison				
	with experimental P-V curves. The critical constants, gas and vapour. Joule expansion of				
	ideal gas, and of a Vander Waals gas, Joule coefficient, estimates of J-T cooling.				
II	Liquefaction of gases: Boyle temperature and inversion temperature. Principle of				
	regenerative cooling and of cascade cooling, liquefaction of hydrogen and helium.				
	Refrigeration cycles, meaning of efficiency.				
	Transport phenomena in gases: Molecular collisions, mean free path and collision cross				
	sections. Estimates of molecular diameter and mean free path.Transport of mass, momentum				
	and energy and interrelationship, dependence on temperature and pressure.				
Ш	The laws of thermodynamics: The Zeroth law, various indicator diagrams, work done by				
	and on the system, first law of thermodynamics, internal energy as a state function and other				
	applications. Reversible and irreversible changes, Carnot cycle and its efficiency, Carnot				
	theorem and the second law of thermodynamics. Different versions of the second law,				
	practical cycles used in internal combustion engines. Entropy, principle of increase of				
	entropy. The thermodynamic scale of temperature; its identity with the perfect gas scale.				
	Impossibility of attaining the absolute zero;				
	third law of thermodynamics. Thermodynamic relationships: Thermodynamic variables;				
	extensive and intensive, Maxwell's general relationships, application to Joule-Thomson				
	cooling and adiabatic cooling in a general system, Van der Waals gas, Clausius-Clapeyron				
	heat equation. Thermodynamic potentials and equilibrium of thermodynamical systems,				

	relation	with	thermod	dynamical	variabl	es.	Cooling	due	to	adiabatic	dem	agnetizat	ion,
	production	on and	measure	ement of v	ery low t	temp	eratures.						
IV	Blackboo	dy rac	liation:	Pure temp	perature	dep	endence,	Stef	an-E	Boltzmann	law,	pressure	of
	radiation	, spec	tral distr	ibution of	Black b	ody	radiation	, Wie	n's	displaceme	ent lav	v, Raylei	igh-
	Jean's la	w, Pla	nk's law	the ultravi	olet cata	strop	ohy.						

Course Outcome: After completion of this course students would be able to comprehend ideal gases, real gases, thermodynamics and blackbody radiation.

CLASS: B.Sc.-1st Year

Subject: CIRCUIT FUNDAMENTALS AND BASIC ELECTRONICS (Code B-118)

UNIT	MODULE
Ι	Growth and decay of currents through inductive resistances, charging and discharging in R.C.
	and R.L.C. circuits, Time constant, Measurement of high resistance. A.C. Bridges, Maxwell's
	and Scherings Bridges, Wien Bridge. THINLY, NORTON and Superposition theorems and
	their applications
II	Semiconductors, intrinsic and extrinsic semiconductors, n-type and p-type semiconductors,
	unbiased diode forward bias and reverse bias diodes, diode as a rectifier, diode characteristics,
	zener diode, avalanche and zener breakdown, power supplies, rectifier, bridge rectifier,
	capacitor input filter, voltage regulation, zener regulator. Bipolar transistors, three doped
	regions, forward and reverse bias, DC alpha, DC beta transistor curves.
III	Transistor biasing circuits: base bias, emitter bias and voltage divider bias, DC load line. Basic
	AC equivalent circuits, low frequency model, small signal amplifiers, common emitter
	amplifier, common collector amplifiers, and common base amplifiers, current and voltage gain,
	R.C. coupled amplifier, gain, frequency response, equivalent circuit at low, medium and high
	frequencies, feedback principles.

IV	Input and output impedance, transistor as an oscillator, general discussion and theory of Hartley
	oscillator only.
	Elements of transmission and reception, basic principles of amplitude modulation and
	demodulation. Principle and design of linear multimeters and their application, cathode ray
	oscillograph and its simple applications.

Course Outcome:After completion of this course students would be able to comprehend electronic devices.

CLASS: B.Sc.-2nd Year

Subject: PHYSICAL OPTICS AND LASERS(Code B-216)

UNIT	MODULE			
Ι	Interference of a light: The principle of superposition, two-slit interference, coherence			
	requirement for the sources, optical path retardations, lateral shift of fringes, Rayleigh			
	refractometer and other applications. Localised fringes; thin films, applications for			
	precision measurements for displacements.			
	Haidinger fringes: Fringes of equal inclination. Michelson interferometer, its application			
	for precision determination of wavelength, wavelength difference and the width of spectral			
	lines. Twymann Green interferometer and its uses. Iriensity distribution in multiple beam			
	interference, Tolansky fringes, Fabry-Perrot interferometer and etalon.			
Π	Fresnel diffraction: Fresnel half-period zones, plates, straight edge, rectilinear			
	propagation.			
	Fraunhoffer diffraction: Diffraction at a slit, half-period zones, phasor diagram and			
	integral calculus methods, the intensity distribution, diffraction at a circular aperture and a			
	circular disc, resolution of images, Rayleigh criterion, resolving power of telescope and			
	microscopic systems, outline of phase contrast microscopy.			
	Diffraction gratings: Diffraction at N parallel slits, intensity distribution, plane diffraction			
	grating, reflection grating and blazed gratings. Concave grating and different mountings.			
	Resolving power of a grating and comparison with resolving powers of prism and of a			
	Fabry-Perrot etalon.			

Ш	Polarization, Double refraction in uniaxial crystals, Nicol prism, polaroids and retardation plates, Babinet's compensator. Analysis of polarised light. Optical activity and Fresnel's explanation, Half shade and Biquartzpolarirneters.Matrix representation of plane polarized waves, matrices for polarizers, retardation plates and rotators, Application to simple systems.
IV	 Laser system: Purity of a special line, coherence length and coherence time, spatial coherence of a source, Einstein's A and B coefficients, spontaneous and induced emissions, conditions for laser action, population inversion. Application of Lasers: Pulsed lasers and tunable lasers, spatial coherence and directionality, estimates of beam intensity; temporal coherence and spectral energy density.

Course Outcome:After completion of this course students would be able to understand various aspects of light.

CLASS: B.Sc.-2nd Year

Subject: ELECTROMAGNETICS(Code B-217)

UNI	MODULE	
Т		Specific
		Outcome
		S

Ι	Electrostatics - Coulomb's law, Electric Field and potentials, Field due to a	To learn
	uniform charged sphere, Derivations of Poisson and Laplace Equations,	about
	Gauss Law and its application: The Field of a conductor. Electric dipole,	electrostat
	Field and potential due to an electric dipole, Dipole approximation for an	ics
	arbitrary charge distribution, Electric quadruple, Field due to a quadruple ,	andmagne
	Electrostatic Energy of a charged uniform sphere, Energy of a condenser.	tostatics.
	Magnetostatics - Magnetic field, Magnetic force of a current, Magnetic	
	Induction and Biot- Savart Law, Lorentz Force, Vector and Scalar Magnetic	
	potentials, Magnetic Dipole, Magnetomotive force and Ampere's Circuital	
	theorem and its applications to calculate magnetic field due to wire carrying	
	current and solenoid.	
II	Electromagnetic Induction - Laws of Induction, Faraday's laws and Lanz's	To learn
	Law. Mutual and Self Induction, Vector potential in varying Magnetic field,	about
	Induction of current in continuous media, Skin effect, Motion of electron in	electroma
	changing magnetic field , Betatron , Magnetic energy in field, Induced	gnetic
	magnetic field (Time varying electric field), Displacement current,	induction.
	Maxwell's equations, Theory and working of moving coil ballistic	
	galvanometer.	
III	Dielectrics - Dielectric constant, polarization, Electronic polarization,	To learn
	Atomic or ionic Polarization Polarization charges, Electrostatic equation	about
	with dielectrics, Field, force and energy in Dielectrics.	dielectrics
	Magnetic Properties of Matter - Intensity of magnetization and magnetic	and
	susceptibility, Properties of Dia, Para and Ferromagnetic materials, Curie	magnetis
	temperature, Hysteresis and its experimental determination.	m in
		matter.
IV	Electromagnetic Waves - The wave', equation satisfied .by E and B, plane	To learn
	electromagnetic waves in vacuum, Poynting's vector, reflection at, a plane	about
	boundary of dielectrics, polarization by reflection and total internal	electroma
	reflection, Faraday effect; waves in a conducting medium, reflection and	gnetic
	refraction by the ionosphere.	waves.

CLASS: B.Sc.-2nd Year

Subject:ELEMENTS OF QUANTUM MECHANICS, ATOMICAND MOLECULAR SPECTRA (Code B-218)

UNIT	MODULE					
Ι	Matter Waves - Inadequacies of classical mechanics, Photoelectric phenomenon, Compton					
	effect, wave particle duality, de- Broglie matter waves and their experimental verification,					
	Heisenberg's Uncertainty principle, Complementary principle, Principle of superposition,					
	Motion of wave packets.					
Π	Schrodinger Equation and its Applications - Schrodinger wave equation Interpretation of					
	wave function, Expectation values of dynamical variables, Ehrenfest theorem, Orthonormal					
	properties of wave functions, One dimensional motion in step potential, Rectangular barrier,					
	Square well potential, Particle in a box, normalization Simple Harmonic Oscillator.					
III	Atomic spectra - Spectra of hydrogen, deuteron and alkali atoms, spectral terms, doublet fine					
	structure, screening constants for alkali spectra for s, p. d, and f states, selection rules. Singlet					
	and triplet fine structure in alkaline earth spectra, L-S and J-J couplings. Weak spectra:					
	continuous X-ray spectrum and its dependence on voltage, Duane and Haunt's law.					
	Characteristics X-rays, Moseley's law, doublet structure and screening parameters in X-ray					
	spectra, X-ray absorption spectra.					
IV	Molecular spectra - Discrete set of electronic energies of molecules, quantisation of					
	vibrational and rotational energies, determination of internuclear distance, pure rotation and					
	rotation- vibration spectra, Dissociation limit for the ground and other electronic states,					
	transition rules for pure vibration and electronic vibration spectra.					

Course Outcome: After completion of this course students would be able to comprehend electricity and magnetism.

CLASS: B.Sc.-3rd Year

Subject: RELATIVITY AND STATISTICAL PHYSICS(Code B-316)

UNIT	MODULE						
Ι	Relativity - Reference systems, inertial frames, Galilean invariance and conservation						
	laws, propagation of light, Michelson-Morley experiment; search for ether.						
	Postulates for the special theory of relativity, Lorentz transformations, length contraction,						
	time dilation, velocity addition theorem, variation of mass with velocity, mass-energy						
	equivalence, particle with a zero rest mass.						
II	Statistical physics						
	The statistical basis of thermodynamics: Probability and thermodynamic probability,						
	principle of equal a prior probabilities, probability distribution and its narrowing with						
	increase in number of particles The expressions for average properties. Constraints;						
	accessible and inaccessible states, distribution of particles with a given total energy into a						
	discrete set of energy states.						
III	Some universal laws: The ji- space representation, division of i- space into energy sheets						
	and into phase cells of arbitrary size, applications to one-dimensional harmonic oscillator						
	and free particles. Equilibrium before two systems in thermal contact, bridge with						
	macroscopic physics. Probability and entropy, Boltzmann entropy relation. Statistical						
	interpretation of second law of thermodynamics. Boltzmann canonical distribution law						
	and its applications; rigorous form of equipartition of energy.						
IV	Maxwellian distribution of 0 speeds in an ideal gas: Distribution of speeds and of						
	velocities, experimental verification, distinction between mean, r.m.s. and most probable						
	speed values. Doppler broadening of spectral lines.						
	Transition to quantum statistics: 'h' as a natural constant and' its implications, cases of						
	particle in a one-dimensional box and one-dimensional harmonic oscillator,						
	Indistinguishability of particles and its consequences, Bose-Einstein, and Fermi-Dirac						
	distributions, photons in black body chamber, free electrons in a metal, Fermi level and						
	Fermi energy.						

Course Outcome:After completion of this course students would be able to understand relativity and statistical mechanics.

CLASS: B.Sc.-3rd Year

Subject: SOLID STATE AND NUCLEAR PHYSICS(Code B-317)

UNI	MODULE	
Т		Specific
		Outcome
		S
Ι	Crystal Structure - Lattice translation vectors and lattice, Symmetry	To learn
	operations, Basis and Crystal structure, Primitive Lattice cell, Two-	about
	dimensional lattice types, systems, Number of lattices, Point groups and	lattices
	plane groups, Three dimensional lattice types, Systems, Number of Lattices,	and X-
	Points groups and space groups. Index system for crystal planes Miller	Ray
	indices, Simple crystal structures, NaCI, hcp, diamond, Cubic ZnS; and	diffraction
	hexagonal, Occurrence of Nonidealcrysal structures, random stacking of	•
	polyprism, glasses.	
	Crystal Diffraction and Reciprocal Lattice - Incident beam, Bragg	
	law, Experimental diffraction method, Laue method, Rotating crystal	
	method, Powder method, Derivation of scattered 'wave amplitude, Fourier	
	analysis, Reciprocal lattice vectors, Diffraction conditions, Ewald method,	
	Brillion zones, Reciprocal lattice to sc, bcc and face lattices , Fourier	
	analysis of the basis and atomic form factor.	
II	Crystal Bindings - Crystal of inert gases, Van der Walls-London	Understan
	interaction, repulsive interaction,	ding
	Equilibrium lattice constants, Cohesive energy, compressibility and bulk	crystal
	modulus, ionic crystal, Madelung energy, evaluation of Madelung constant,	bindings
	Covalent crystals, Hydrogen-bonded crystals, Atomic radii.	and lattice
	Lattice Vibrations - Lattice Heat capacity, Einstein model, Vibrations of	vibrations.
	monatomic lattice, derivation of dispersion relation, First brillouin zone,	

	group velocity, continuum limit, Force constants, Lattice with two atoms per	
	primitive cell, derivation of dispersion relation, Acoustic and optical modes,	
	Phonon momentum. Free electron theory, Fermi energy, density of states,	
	Heat capacity of electron gas, Paramagnetic susceptibility of conduction	
	electrons, Hall effect in metals. Origin of band theory, Qualitative idea of	
	Bloch theorem, Kronig-Penney model, Number of orbitals in a band,	
	conductor, Semi-conductor and insulators, Effective mass, Concept of holes.	
III	Nuclear Physics	Understan
	1. General Properties of Nucleus:	ding
	Brief survey of general Properties of the Nucleus, Mass defect and binding	nuclear
	energy, charges, Size, Spin and Magnetic moment, Bainbridge mass	properties.
	spectrograph.	
	2. Nuclear Forces:	
	Saturation phenomena and Exchange forces, Deutron ground state	
	properties.	
	3. Nuclear Models:	
	Liquid drop model and Bethe Weiszacker mass formula, Single particle shell	
	model (only the level scheme in the context of reproduction of magic	
	numbers).	
	4 Natural Radioactivity:	
	Fundamental laws of radioactivity, Soddy-Fajan's displacement law and law	
	of radioactive disintegration, Basic ideas about α , β and Υ decay.	
IV		To learn
	1. Nuclear Reactions:	about
	Nuclear reactions and their conservation laws, Cross section of nuclear	nuclear
	reactions, Theory of fission (Qualitative), Nuclear reactors and Nuclear	reactions
	fusion.	and
	2. Accelerators and detectors:	elementar
	Vande Graff, Cyclotron and Synchrotron, Interaction of charged particles	у
	and gamma rays with matter (qualitative), GM counter, Scintillation counter	particles.
	and neutron detectors.	

3. Elementary Particles:

Basic classification based on rest mass, Spin and half life, particle interactions (gravitational, Electromagnetic, week and strong Interactions).

CLASS: B.Sc.-3rd Year

Subject: SOLID STATE ELECTRONICS(Code B-318)

UNIT	MODULE
Ι	Diffusion of minority carriers in semiconductor, work function in metals and
	semiconductors Junctions between metal and semiconductors, Semiconductor and
	semiconductor, p.n. Junction, Depletion layer, Junction Potential Width of depletion layer,
	Field and Capacitance of depletion layer, Forward A.C. and D.C. resistance of junction,
	Reverse Breakdown.
	Zener and Avalanche diodes, Tunnel diodes, Point contact diode, their importance at High
	frequencies, LED photodiodes, Effect of temperature on Junction diode Thermistors.
II	Transistor parameters, base width modulation, transit time and life-time of minority carriers,
	Base- Emitter resistance Collector conductance, Base spreading resistance, Diffusion
	capacitance, Reverse feedback ratio, Equivalent circuit for transistors, Basic model, hybrid
	model and Y parameter equivalent circuit, Input and output impedances.
III	Current and Voltage gain, Biasing formulae for transistors, Base bias, emitter bias and
	mixed type bias and mixed type biasing for small and large signal operation. Transistor
	circuit application at law frequencies, their AC and DC equivalent for three different modes
	of operation, Large signal operation of transistors, Transistor Power amplifiers, Class A and
	B operation, Maximum power output Effect of temperature, heat sinks, thermal resistance
	Distorsion in amplifiers, cascading of stages, Frequency response, Negative and positive
	feedback in transistor amplifiers.

IV	Field effect transistors and their characteristics, biasing of FET, use in preamplifiers ,
	MOSFET and their simple uses.
	Power Supplies:
	Electronically regulated low and high voltage power supplies, Inverters for battery operated
	equipments.
	Miscellaneous:
	Basic linear integrated circuits, phototransistors, Silicon Controlled rectifiers, Injunction
	transistor and their simple uses.

Course Outcome:After completion of this course students would be able to understand solid state electronics devices.

CLASS: M.Sc. I (SEM)

Subject: MATHEMATICAL PHYSICS (CODE:H-1027)

UNIT	MODULE	Specific
		Outcomes
Ι	Polynomials- Legendre, Hermite and Laguerre polynomials and	To learn about
	their generating functions. Recurrence relations and special	differential
	properties of Pn(x) as solution of Legendre	equations and
	differential equation, Rodrigues formula, orthogonality of $Pn(x)$,	special function.
	associated Legendre polynomials (Introdution only).	
II	Bessel function of first kind, generating function, recurrence	Learning Bessel
	relations, Jn(x) as solution of Bessel differential equation,	differential
	Expansion of $Jn(x)$ when n is half and odd integer, Integral	equation and its
	representation.	solution.
III	Complex Variable: Function of a complex variable, Cauchy	Learning contour
	Riemann conditions, Cauchy's integral theorem (without proof),	integrals.
	Cauchy's integral formula, Cauchy's Residue theorem, singular	
	points and evaluation of definite integrals of the type	

	$\int 02\pi f(\sin\theta, \cos\theta) d\theta, \int -\infty\infty f(x) dx, \int -\infty\infty f(x) eiax dx$	
IV	Integral Transforms: Laplace Transform, First and second	Learning use of
	shifting theorems, Inverse LT by partial fractions, LT of derivative	Laplace transform
	and integral of a function, Solution of initial value problems by	to solve
	using LT,	differential
		equation.
V	Fourier Series and Fourier Transform: Fourier series, Half	Learning F
	range expansion, Arbitrary period, Fourier integral and transforms,	ourier series and
	FT of delta and Gaussian function.	transform.

CLASS: M.Sc.I (SEM)

Subject: CLASSICAL MECHANICS (Code : H-1028)

	MODULE
UNIT	
Ι	Preliminaries: Newtonian mechanics of a particle, Mechanics of a system of particles,
	Constraints; their classification, D'Alembert's principle, Virtual work, generalized
	coordinates and derivation of Lagrange's equations, Velocity-Dependent potentials and the
	Dissipation function, Applications of Lagrangian formulation: Simple Pendulum with rigid
	support, Two connected masses with string passing over a pulley.
II	Variational Principles and Lagrange's Equations: Hamilton's principle, Some techniques of
	the calculus of variations, Derivation of Lagrange's equation from Hamilton's principle,
	advantages of variational principle formulation, Principle of least action.
III	Two body central force problem: Reduction to the equivalent one-body problem, Motion in
	a central force field, The Virial theorem, The inverse square law of force, The motion in
	central force in the Kepler problem.

IV	Hamiltonian equations of motion: Legendre transformations and Hamilton equations of
	motion, Cyclic coordinates and conservation theorems, Canonical transformation generating
	functions, Properties, Poisson bracket, Poisson theorem, Relation of Poisson brackets,
	Hamilton Jacobi method
V	Small oscillations: Concept of small oscillations, Expression of kinetic energy and potential
	energy for the problem of small oscillations, Frequencies of free vibration, and Normal
	coordinates.

Course Outcome: After completion of this course students would be able to learn about the motion of a particles, conservation principles involving momentum, angular momentum and energy and understand that they follow the fundamental equation. Understand the Lagrangian and Hamiltonian formulation.

CLASS: M.Sc.I(SEM)

Subject: QUANTUM MECHANICS-I (Code-H-1029)

UNIT	MODULE
Ι	Wave Mechanics: Dual nature of matter and radiation, Schrodinger equation, Principle of
	superposition, Motion of wave packets, Uncentainty principle, Fundamental postulates of
	wave mechanics, Eigenvalues and eigenvectors, Probabilistic interpretation, normalization
	of bound and continuum state wave functions, Expectation values of dynamical variables,
	Coordinate and momentum representation, Hermitian operator, Commutator algebra and
	uncertainty relation, Three dimensional potential well and Hydrogen atom.
II	Representation and Transformations: State vectors, Hilbert Space, Dirac notations,
	Dynamical and linear operators in matrix form, Linear harmonic oscillator in matrix
	formulation, Space and time displacements, Rotation generators, Transformations of
	dynamical variables, Symmetry and conservation laws. Symmetric and anti symmetric
	wave-functions and Pauli exclusion principle.
III	Approximate Methods: Time independent first and second order perturbation theory for
	non-degenerate and degenerate levels, Variational method and its application for Helium
	atom. Stark effect, Dipole polarizability of ground state Hydrogen atom, Zeeman Effect.

IV	Angular momentum: Commutation relations involving angular momentum operators, the
	eigenvalue spectrum, Matrix representation of J, Addition of angular momentum, Clebsch-
	Gordon coefficients, Spin angular momentum, Spin wave functions, Addition of spin and
	orbital angular momentum.
V	Scattering Theory: Laboratory and centre-of-mass systems, scattering by potential field,
	scattering amplitude, differential and total cross sections, phase shift, Lippmann-Schwinger
	equation, First Born approximation.

Course Outcome: After completion of this course students would be able to understand quantum mechanics.

CLASS: M.Sc.I (SEM)

Subject: ELECTRONICS DEVICES (Code-H-1030)

UNIT	MODULE
Ι	Conduction Mechanism in Semiconductors: Classification of semiconductors - Elemental
	and compound semiconductors, Direct band and indirect band gap semiconductors, Charge
	carriers in extrinsic semiconductors, Carrier concentrations; The Fermi Level, electron and hole
	concentrations at equilibrium, temperature dependence of carrier concentrations, drift of
	carriers in electric and magnetic fields; conductivity and mobility, drift and resistance, effect of
	temperature and doping on mobility, The Hall effect, Diffusion of carriers in semiconductors;
	diffusion processes, diffusion and drift of carriers, diffusion and recombination, The continuity
	equation.
II	Semiconductor-diode characteristics: Qualitative theory of P-N junction, The Contact
	Potential, Space charge at a junction, Capacitance of p-n junctions, Forward and reverse bias
	junctions, Reverse bias breakdown, Zener diode, Tunnel diode.
III	Bipolar Junction Transistors: Transistor current components, The transistor as an Amplifier,
	CB, CE, CC configurations, Input output characteristics, Early Effect, Graphical analysis of the
	CE configuration, Transistor hybrid model, h parameters, Analysis of a Transistor amplifier
	circuit using h parameters, Hybrid π model, Ebers-Moll model, Transistor biasing and thermal

	stabilization.
IV	Field Effect Transistors: Construction and characteristics of JFET, transfer characteristic. The
	FFT small signal model Measurement of gm and rd IFFT fixed hias Self hias and voltage
	TET sman signal model, weasurement of gin and fu, st ET fixed blas, sen blas and voltage
	divider configurations, JFET source follower (common-Drain) configuration, JFET Common –
	Gate configuration, Depletion and enhancement type MOSFETs.
V	Feedback Amplifiers: Classification of Amplifiers, Feedback concept, Ways to introduce
	negative feedback in Amplifiers, Effect of negative feedback, Method of analysis of a feedback
	amplifier, Volatge-series feedback, Current-series feedback, Volatge-shunt feedback, Current-
	shunt feedback, Nyquist criterion for stability of feedback amplifiers.

Course Outcome:After completion of this course students would be able to understand electronic devices.

CLASS:M.Sc.II(SEM)

Subject:QUANTUM MECHANICS-II(Code-H-2027)

UNIT	MODULE
Ι	Time dependent Perturbation Theory : First order perturbation, Interaction of an atom
	with electromagnetic field, Transition probabilities, Fermi Golden rule, Dipole
	approximation.
II	Induced and Spontaneous radiations: Einstein A and B coefficients, Induced and
	spontaneous emissions of radiations, their applications in the construction of gas and
	solid lasers.
III	Quantum Theory of Radiation: Classical radiation field, Fourier decomposition and
	radiation oscillators, Creation, annihilation and number operators, Photon states,
	Quantized radiation field, Basic matrix elements for emission and absorption,
	Spontaneous emission in the dipole approximation, Plank's radiation law.

IV	Relativistic Equations: Klein-Gordon equation and its plane wave solution, Probability		
	density in KG theory, Difficulties in KG equation, Dirac equation for a free electron,		
	Dirac matrices and spinors, Plane wave solutions, Charge and current densities,		
	Existence of spin and magnetic moment from Dirac equation of electron in an		
	electromagnetic field.		
V	Dirac Equation: Dirac equation for central field with spin orbit interaction, Energy		
	levels of Hydrogen atom from the solution of Dirac equation, Covariant form of Dirac		
	equation.		

Course Outcome: After completion of this course students would be able to understand advanced topics of quantum mechanics.

CLASS: M.ScII(SEM)

Subject: STATISTICAL MECHANICS(Code-H-2028)

Г

UNIT	MODULE		
Ι	Foundation of Statistical Mechanics & Ensembles: Phase space, concept of		
	Ensemble, Ensemble average, Liouville's theorem, equation of motion and Liouville's		
	theorem, Canonical Ensemble, Microcanonical Ensemble, Grand Canonical Ensemble,		
	partition functions.		
II	Statistical Quantities: Calculation of statistical quantities, Energy and density		
	fluctuations, Entropy of an ideal gas using microcanonical Ensemble, Gibb's paradox,		
	Sackur- Tetrode equation.		
III	Postulates of quantum statistical mechanics, Density matrix, Statistics of		
	indistinguishable particles, Maxwell-Boltzmann, Fermi- Dirac and Bose- Einstein		
	Statistics, properties of ideal Bose and Fermi gases, Bose-Einstein condensation.		
IV	Cluster expansion for a classical gas, virial equation of state, ising model, mean-field		
	theories of the ising model in three, two and one dimensions, Exact solutions in one-		
	dimension.		
	Landau theory of phase transition, critical indices, scale transformation and		
	dimensional analysis.		

V	Fluctuations: Correlation of space-time dependent fluctuations, fluctuations and		
	transport phenomena, Brownian motion, Langevin theory, fluctuation dissipation		
	theorem, The Fokker-Plank equation.		

Course Outcome: After completion of this course students would be able to comprehend the topics of statistical mechanics which are important tools for modern research.

CLASS: M.Sc. II (SEM)

Subject:ELECTEODYNAMICS AND PLASMA PHYSICS(Code:H-2029)

UNIT	MODULE	Specific
		Outcome
Ι	Electrostatics: Electrostatic fields in matter; Dielectrics, Polarization, Field	To learn
	inside a dielectric, Electric displacement, Linear dielectrics. Laplace's and	about
	Poisson Equations, Methods of images, point charge near an infinite	electric field
	conducting plane, Point charge in the presence of grounded conducting	and potential
	sphere, Point charge in presence of charged insulated sphere.	in various
		cases.
II	Magnetocstatics: Magnetic vector potential, Magnetostatic fields in Matter:	Learning
	Magnetization, field of a magnetized object, magnetic field inside matter,	about
	linear and non linear magnetic media.	magnatic
		field and
		magnetizatio
		n of
		material.
III	Time-Varying Fields: Maxwell's displacement current, Maxwell's equations,	Learning
	Maxwell's equations in terms of vector and scalar potentials, Poynting	Maxwell's
	theorem, Lienard- Wiechert potentials due to a point charge, Fields of a point	equations.
	charge in motion, Power radiated by an accelerated charge, Larmor's	
	formula and its relativistic generalization.	

IV	Plane Electromagnetic Wave: Reflection, Refraction of electromagnetic	To learn
	waves at an interface between dielectrics, Fresnel's relation polarization by	about
	reflection and total internal reflection, Plain electromagnetic waves in free	eletctromagn
	space, dielectrics and conducting media	etic waves.
V	Plasma: Definition of plasma ,Concept of temperature, Debye shielding,	To learn
	Criteria for plasma, Single-particle motions in E and B fields, Magnetic	about
	mirrors and plasma confinement, Plasma as fluid, the fluid equation of	plasma.
	motion, Equation of continuity and equation of state, Waves in plasmas,	
	Plasma oscillations, Plasma frequency ωp , Electron plasma waves, ion	
	waves, Electron and ion oscillations perpendicular to B and parallel to B ,	
	Cutoffs and resonances.	

Course Outcome:After completion of this course students would be able to understand electrodynamics and plasma physics.

CLASS:M.ScII(SEM)

Subject:ATOMIC& MOLECULAR PHYSICS(Code: H-2030)

UNIT	MODULE
Ι	Quantum Mechanical Treatment of one-electron Atom, Spin-Orbit interaction and fine
	structure of hydrogen atom, Spectra of alkali elements. Singlet and triplet States of
	Helium.
II	Many electron atoms: Central field approximation, Thomas-Fermi field, Atomic wave
	function, Hartree and Hartree –Fock approximations, Spectroscopic Terms: L S and J J
	coupling schemes for many electron atoms, Introduction of Zeeman Effect, Paschen effect
	and Stark effect, Electric dipole and Electric Quadrupole.
III	Born - Oppenheimer approximation, Heitler-London theory of H2, LACO treatment of
	H2+ and H2, Classification of Molecules, Types of Molecular Spectra and Molecular
	Energy States: Pure Rotational Spectra, Vibrational-Rotational Spectra, Raman Scattering,
	Selection rules, Isotope effect, Classification of electronic states, Coupling of rotational
	and electronic motions, Electronic spectra: Franck-Condon principle.

IV	Infrared Spectroscopy, General description and working of infra-red Spectrophotometer,
	Raman spectroscopy, Raman Spectrometer.
V	Photoelectron Spectroscopy, Photoelectron Spectrometer, Nuclear Magnetic Resonace,
	Chemical Shift, NMR Spectrometer, Electron Spin Resonance (Introduction and their
	principles only), ESR Spectrometer.

Course Outcome: After completion of this course students would be able to understand atomic and molecular spectra and its important applications.

CLASS:M.Sc.III(SEM)

Subject:SPECIAL PAPER-II (ELECTRONICS)(Code-H-7030)

UNIT	MODULE	Specific
		Outcomes
Ι	Microwave Devices: Klystrons amplifiers, velocity modulation, Basic	Learning
	principles of two cavity klystrons, Multicavityclystron amplifier and	about various
	Reflex klystron oscillator, Magnetrons, principles of operation of	resonators.
	magnetrons and Travelling wave tube (TWT).	
	Transferred electron devices, Gun effect, Principles of operations, modes	
	of operation, Read diode, IMPATT diode, and TRAPATT diode.	
II	Amplitude Modulated Systems: Frequency translation, method of	To learn about
	frequency translation, recovery of the base band signal, Amplitude	amplitude
	modulation, Maximum allowed modulation, The square law	modulation.
	demodulation, Spectrum of an amplitude modulated signal, Modulators	
	and Balanced modulators, Single side band modulation, Methods of	
	generating as SSB signal, Vestigial side band modulation, Multiplexing.	
III	Frequency Modulated Systems: Angle modulation, Phase and	To learn about
	frequency modulation, Relationship between phase and frequency	frequency
	modulation, Phase and frequency deviation, Spectrum of an FM signal,	modulation.
	Sinusoidal modulation, Bandwidth of a sinusoidally modulated FM	

	signal, FM generation, Parameter variation method, Armstrog system.	
IV	Transmission and Radiation of signals: Primary line constants, phase	To learn about
	velocity and line wavelength, Characteristic impedance, Propagation	transmission
	Coefficient, Phase and group velocities, Standing waves, Lossless line at	and radiation.
	radio frequencies, Voltage standing wave ratio, Slotted line	
	measurements at radio frequencies, Transmission lines as circuit	
	elements, Smith chart, Single and double Stub matching, Time domain	
	reflectometry, Telephone lines and cables, Radio frequency lines.	
V	Fiber optic communications: Principles of light transmission in a fiber,	Learning
	Propagation within a fiber, Effect of index profile on propagation, Modes	about fiber
	of propagation, Single mode propagation, Losses in fibres, Dispersion,	optics.
	Fiber optic communication systems.	

CLASS:M.Sc.III(SEM)

Subject:CONDENSED MATTER PHYSICS(Code:H-3027)

UNIT	MODULE
Ι	Crystal Physics and Defects in Crystals:
	Crystalline solids, unit cell and direct lattice, Bravais lattice in two dimensions (plane
	lattice) and three-dimensional (space lattice), Closed packed structures.
II	Interaction of X-rays with matter, Absorption of X-rays, X-ray diffraction, The Laue,
	powder and rotating crystal methods, The reciprocal lattice and its important
	properties and applications, Diffraction intensity, Atomic scattering factor,
	Geometrical structure factor.
III	Crystal imperfections: Point defects, line defects and planer (stacking) faults.
	Estimation of dislocation density from X-ray diffraction measurements. The
	observation of imperfections in crystals: electron microscopic techniques.

IV	Electronics Properties of Solids:		
	Electrons in a periodic lattice: Bloch theorem, The Kronig-Penny Model, Effective		
	mass of an electron, Tight-binding approximation, Cellular and pseudopotential		
	methods,		
	Fermi surface: Fermi surface and Brillouin zones, Anomalous skin effect, Cyclotron		
	resonance, de Hass van Alphen effect, Magnetoresistance, Hall effect in		
	semiconductors		
	Superconductivity: Elements of BCS theory, Flux quantization, Meissner effect,		
	Critical temperature, Persistent current.		
V	Ferromagnetism: Weiss theory of ferromagnetism, Heisenberg model and molecular		
	field theory, Ferromagnetic domains, The Bloch-wall, Spin waves and magnons,		
	Curie- Weiss law for susceptibility, Ferri and antiferro-magnetic order.		

Course Outcome:After completion of this course students would be able to comprehend important topics in condensed matter physics.

CLASS:M.Sc.III(SEM)

Subject:NUCLEAR AND PARTICLE PHYSICS (Code:H-3029)

UNIT	MODULE	Specific Outcomes
Ι	Introductory Concept of Nuclei: Binding energy and Binding energy	Learning
	per nucleon, Nuclear angular momentum, Nuclear magnetic dipole	properties of
	moment and Electric quadruple moment, Parity quantum number,	nucleus.
	Statistics of nuclear particles, Isobaric spin concept, Systematic of	
	stable nuclei.	
II	Nuclear Disintegration: Simple theories of decay, Properties of	Learning
	neutrino, Non-conservation of parity and Wu's experiment in beta	nuclear
	decay, Electron capture, Internal conversion.	decyas.

III	Inter Nucleon Forces: Properties and simple theory of the deuteron	To learn about
	ground state, Spin dependence and tensor component of nuclear forces,	nuclear forces.
	Nucleon- nucleon scattering at low energy, Charge- independence of	
	nuclear forces, Many – nucleon systems and saturation of nuclear	
	forces, Exchange forces, Elements of meson theory.	
IV	Nuclear Structure and Models: Fermi gas model, Experimental	Learning
	evidence for shell structure in nuclei, Basic assumption for shell model,	nuclear
	Single- particle energy levels in central potential, Spin-orbit potential	models.
	and prediction of magic numbers, Extreme single- particle model,	
	Prediction of angular momenta, Parities and magnetic moment of	
	nuclear ground states, Liquid drop model, Semi- empirical mass	
	formula, Nuclear fission, The unified model.	
V	5.Particle Physics: Properties and origin, Elementary particles,	Learning
	Properties, classification, type of interactions and conservation laws,	classification
	Properties of mesons, Resonance particles, Strange particles and	of elementary
	Strangeness quantum number, Simple ideas of group theory, Symmetry	particles and
	and conservation laws, CP and CPT invariance, Special symmetry	symmetries.
	groups SU (2) and SU (3) classification of hadrons, Quarks, Gell-	
	Mann- Okubu mass formula.	

CLASS:M.ScIII(SEM)

Subject:SPECIAL PAPER-I (ELECTRONICS)(Code-H-7027)

MODULE
Operational Amplifier Basic and Application: Review of Feedback, Linear Circuit, Op-Amp
Basic, Inverting and Non-inverting amplifiers, Unity follower, Summing amplifiers, Integrator,
Differentiator, Op- Amp Specifications- DC Off-set parameter, Frequency parameters,
Imperfection in Op- Amplifier application- multiple stage gain, Voltage summing and
subtraction, Current controlled voltage ource, Voltage controlled current source, Rectifiers and
Limiters, Comparators and Schmitt Triggers, Active filters.

	Digital Logic Cates: Symbols and truth tables. Classes of digital integrated circuits (Diode
	1 : DTI TTI FOL MOGEET (MOG) T
	logic, DTL, TTL, ECL, MOSFET, CMOS), Transistor- Transistor Logic (TTL), Single Input
	TTL Inverter (transfer characteristic), Multi- collector transistors, Propagation delays, Diode
	Logic, DTL NAND Gate (transfer characteristic, noise immunity, fan out), Emitter Coupled
	Logic (transfer characteristic of OR/NOR gate, practical implementation, MOSFET Logic-
	Review of MOSFET, MOSFET Inverter with active load, MOSFET NOR and NAND gates,
	Complementary MOS (CMOS)- CMOS inverter, CMOS NOR and NAND, Power dissipation
	in CMOS, Advantages/Disadvantages of CMOS.
	Digital Electronics and Logic Gate: Binary, Octal, Hexadecimal number system, Base
	conversion system, Bipolar junction and Field Effect transistor as switches, Basic digital logic
	gates (OR, AND and NOT, NOR, NAND and Exclusive OR), XOR gate, Boolean laws and
	theorem, Sum of Product (SOP) and Peroduct of Sum (POS) method, Karnaugh map, pair, quad
	and octave, POS simplification, min-term, max-term.
	Application of Digital Logic Gate: Half adder and Full adder circuit, multiplexers,
	demultiplexer, Flip- Flop and Registers- RS Flip Flop, D- Flip Flop, T- Flip Flop, JK- Flip
	Flop, JK Master- Slave Flip Flop, Astable, Monostable and Bi-stable multivibrator, types of
	registers, serial-in-serial out, serial-in-parallel out, parallel-in-serial out, parallel-in parallel out,
	Counters and Convertors- asynchronous and synchronous counter, Mod-3 and Mod-5
	counters, shift counters, Digital-to Analog Converters-D/A converter, ladder network, A/D
	converters.
	Microprocessor-Intel 8085 microprocessor architecture, interfacing devices, BUS timing,
	instruction set, simple illustrative program.
L	

Course Outcome:After completion of this course students would be able to comprehend OP-AMP and digital electronics.

CLASS:M.Sc.IV(SEM)

Subject: COMPUTATIONAL METHOD AND PROGRAMMING(Code-H-4027)

UNIT	MODULE	Specific
		Outcome
Ι	Computational methods: Methods for determination of zeros of linear and	To learn
	nonlinear algebraic equations and transcendental equations, Bisection	about method
	method, Muller's method, Quotient-difference method, Newton-Raphson	to find roots.
	method	
	Solution of simultaneous linear equations, consistency of a system of linear	
	equation, Gaussian elimination, LU decomposition method, matrix	
	inversion, Jacobi iterative method, Gauss-Seidel method, convergence of	
	Gauss-Seidel method	
II	Diagonalization of matrices, Eigen values and eigenvectors of matrices,	To learn
	Power and Jacobi method.	about
	Finite differences, Newton's formula for interpolation, Gauss, Stirling,	matrices and
	Bessel's, Everett's formulae, Divided differences, Newton's general	interpolations.
	interpolation formula, Lagrange's interpolation formula.	
III	Numerical differentiation, Numerical integration, Trapezoidal rule, Simpson	Learning
	1/3 and 3/8 rules, Boole's and waddles rules, Newton-Cote's formula, Euler-	differentiation
	Maclaurin formula, Gauss quadrature formula.	and curve
	Method of Least square curve fitting, straight line and quadratic equation	fitting.
	fitting, curve fitting of curves y =axb, y =aebx, xya= b and y = abx, curve	
	fitting by sum of exponentials, data fitting with cubic splines.	
IV	Numerical solution of ordinary differential equations, Euler, Picard and	To learn
	Runge-Kutta methods, Predictor and corrector method, elementary ideas of	methods to
	solutions of partial differential equations, solution of Laplace equation	solve
		differential
		equations.
V	Programming: elementary information about digital computer principles,	Learning
	compilers, interpreters and operating systems, Fortran programming, flow	Fortran
	charts, integer and floating point, arithmetic expressions, built in functions,	programing.
	executable and non executable statements, IF statements, GO TO statements,	

DO loop and implied DO loop, simple computer programmes.

CLASS:M.Sc.IV(SEM)

Subject: PHYSICS OF NONOMATERIALS (Code-H-4028)

UNIT	MODULE	
Ι	Introduction to Nanostructure Materials: Nanoscience& nanotechnology, Size	
	dependence of properties, Moor's law, Surface energy and Melting point depression of	
	nanoparticles, Free electron theory (qualitative idea) and its features, Idea of band	
	structure, insulators, semiconductors and conductors, Energy band gaps of	
	semiconductors, Effective masses and Fermi surfaces, Localized particles, Donors,	
	Acceptors and Deep traps, Mobility, Excitons, Density of states, variation of density of	
	states with energy and size of crystal.	
II	Quantum Size Effect: Quantum confinement, Nanomaterials structures, Quantum well,	
	Quantum wire and Quantum dot, Fabrication techniques.	
III	Characterization techniques of Nanomaterials: Determination of particle size, XRD	
	(Scherrer's formula), Increase in width of XRD peaks of nanoparticles, Shift in absorption	
	spectra peak of nanoparticles, shift in photoluminescence peaks, Electron microscopy:	
	Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM),	
	Scanning Probe microscopy (SPM), Scanning Tunneling Electron Microscopy (STEM)	
	and Atomic Force Microscopy (AFM).	
IV	Synthesis of Nanomaterials: Key issues in the synthesis of Nanomaterials, Different	
	approaches of synthesis, Top down and Bottom up approaches, Cluster beam evaporation,	
	Ball Milling, Chemical vapor deposition, capping agents, Carbon nanotubes (CNT)-	
	Synthesis, Properties and Applications.	

Course Outcome:After completion of this course students would be able to comprehend nanomaterials.

CLASS:M.Sc.IV(SEM)

Subject:SPECIAL PAPER-IV (ELECTRONICS)(Code-H-8030)

UNIT	MODULE
Ι	Materials for Integrated Circuits
	Classification of IC, CMOS Process Overview, Electronic grade silicon, Crystal growth
	,Czeehralski and float zone crystal growing methods, Silicon shaping lapping, Polishing
	and wafer preparation,
Π	Hot Processes-I: Oxidation and Diffusion
	Oxidation of silicon, oxide deposition by thermal dry oxidation and wet oxidation method
	$Diffusion\ Process,\ Diffusion\ Coefficient,\ Fick's\ 1st\ and\ 2nd\ Laws\ of\ Diffusion,\ Vacancy-$
	Impurity interactions, Dopants and Dopant Sources, Doping by Diffusion, ion
	implantation, Diffusion Process Control, Diffusion Systems, Implantation Technology,
	Selective Implantation, Junction depth, Channeling, Lattice Damage, Annealing ,Dopant
	Diffusion and Related Operations: Equipment for Diffusion and Related Operations.
III	Thin Films: Metals and Nonmetals
	Vacuum Science and Technology, Evaporation theory and electron beam evaporation,
	evaporation system, idea of DC and R.F. sputtering system, Physical vapor deposition
	methods, Design construction of vacuum coating units, Chemicals Vapor Deposition,
	Reactors for Chemical Vapor Deposition, CVD Applications, Epitaxy methods for thin
	film deposition, Vapor-Phase Epitaxy,
IV	Photolithography, Photoresist Processing and Etching
	Wafer Cleaning methods, Wafer Preparation method: Vapor HMDS Treatment for
	adhesion improvement of photoresist, photoresist coating methods, soft backing of photo
	resist, post exposure backing of photo resist, Negative photoresist, Positive photoresist,
	Contrast and sensitivity of photoresist, Chemical Modulus Transfer Function (CMTF) of
	Photoresist, Resist Exposure (single, bi-layer and multi level photoresist exposure) and
	Resist Development, Hard Baking and Resist curing, Photolithographic Process Control.
	Photolithography: An Overview, lithography, Raleigh criterion for resolution,
	Photolithography source, Resolution and numerical aperture, Photolithographic methods:
	Contact, proximity and projection and their resolution limit, Photo mask and mask
	Alignment, Limitations of optical lithography, Concept of phase-shift mask, Idea of

	electron beam lithography, Electron optics, Idea of an X-ray lithography and x-ray mask,
	Wet chemical dry etching for material removal, Reactive plasma etching, Ion milling,
V	Interconnections and Contacts and Packaging and Yield
	Ohmic Contact Formation, Contact Resistance, Electromigration, Diffused
	Interconnections, Polysilicon Interconnections, Buried Contacts, Butted Contacts,
	Silicides, Multilayer Contacts, Liftoff Process, Multilevel Metallization.
	Testing, Die Sepration, Die Attachment, Wire Bonding, Packages, Flip-Chip Process,
	Tape-Automated-Bonding Process, Yield, Uniform and Nonuniform Defect Densities.

Course Outcome:After completion of this course students would be able to understand advanced topics in electronics.

CLASS:M.Sc.IV(SEM)

Subject:SPECIAL PAPER-III (ELECTRONICS)(Code-H-8027)

T	
Ι	Digital communication: Elements of a digital communication system, sampling theorem –
	Low Pass and Band Pass signals, Pulse Amplitude Modulation, Natural sampling. Flat - top
	sampling, Other forms of Pulse Modulation, Pulse Code Modulation, uniform and non-
	uniform Quantization of signals, Quantization error, Differential PCM, Delta Modulation,
	Adaptive Delta Modulation.
II	Digital Modulation techniques: Principle of Binary Phase Shift Keying (BPSK), Generation
	and Reception of BPSK, Bandwidth of BPSK Signal, Differential Phase Shift Keying
	(DPSK); DPSK Transmitter and Receiver, Bandwidth of DPSK Signal, Quadrature Phase
	Shift Keying (QPSK); QPSK transmitter and Receiver, Bandwidth of QPSK Signal, Binary
	Frequency Shift Keying (BFSK), BFSK Transmitter and receiver, Amplitude Shift Keying
	(ASK).
III	Random Variables, Probability Distributions, Random Processes,
	Mathematical representation of Noise: Sources of noise. Frequency domain representation of
	noise, effect of filtering on the probability density of Gaussian noise, Spectral components of
	noise, Response of a narrowband filter to Noise, effect of a filter on the power spectral
	density of noise, Superposition of noises, Mixing involving noise, Linear Filtering of Noise.
IV	Data Transmission: Baseband signal receiver, probability of error Optimum filter
	probability of error for Optimum receiver, Matched filter, Impulse response of Matched filter,
	probability of error of a Matched filter Correlation.
V	Satellite Communication: Introduction to Satellite Systems, Types of Satellites, Frequency
	Allocations, Satellite orbits; orbit fundamentals, Orbit shape, Height of Geostationary orbit,
	Law governing satellite motion; Kepler's Laws, Antenna Look Angles determinations,
	Orbital Elements, Orbit Perturbations, Inclined Orbits, Global Positioning Systems, Satellite
	link power budget equation, system Noise, carrier to noise ratio for uplink and downlink,
	combined uplink and downlink carrier to noise ratio.

Course Outcome: After completion of this course students would be able to understand digital communication, few topics in probability theory, data transmission and satellite communication.